Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Excitation Energy Transfer in Photosynthetic Reaction Centres
Ptáček, Michal ; Mančal, Tomáš (vedoucí práce) ; Dostál, Jakub (oponent)
Fotosyntetická reakční centra mají pro fotosyntetizující organismy kruciální roli. Právě zde totiž dochází k tzv. separaci náboje, kdy je energie excitovaného stavu elektronu využita na ionizaci molekul a uvolněný elektron se pak podílí na ustanovení transmembránového elektrochemického gradientu H+ iontů využívaného ATP syntázami. Světlosběrné komplexy absorbují energii dopadajících fotonů a s vysokou účinností blížící se jedné ji přenášejí právě do reakčních center. Efektivita tohoto přenosu budí zájem vědců již mnoho dekád a rozvoj experimentálních metod umožnil značné porozumění jeho původu. Získané poznatky, v kombinaci s kvantově mechanickými přístupy, lze navíc využít i na ryze teoretický výzkum zahrnující detailní počítačové simulace. Vlastnosti celých molekulární komplexů tak mohou být určeny s vysokou přesností a nezávisle na experimentech. Text této práce přestavuje úvod do teoretického studia fotosyntézy a shrnuje vývoj odvětví za poslední dvě dekády. Popsané hlavní teoretické přístupy a modely jsou dále prezentovány na příkladu reakčních center purpurové fotosyntetizující bakterie Rhodobacter sphaeroides, která představuje důležitý modelový organismus. Na tomto příkladě jsou také srovnány experimentálně i teoreticky získané hodnoty časů přenosu excitační energie.
Artificial light-harvesting antenna based on an aggregation of bacteriochlorophyll c with selected pigments
Malina, Tomáš ; Pšenčík, Jakub (vedoucí práce) ; Litvín, Radek (oponent)
Název práce: Umělá světlosběrná anténa založená na agregaci bakteriochlorofylu c s vybranými pigmenty Autor: Tomáš Malina Katedra: Katedra chemické fyziky a optiky Vedoucí diplomové práce: doc. RNDr. Jakub Pšenčík, Ph.D., KCHFO MFF UK Abstrakt: Sluneční energie je jedním z nejdůležitějších zdrojů energie pro všechny živé organismy v přírodě. Její záchyt probíhá ve specializovaných světlosběrných komplexech zvaných antény, které typicky obsahují proteinovou kostru s navázanými pigmenty. Výjimečnými jsou v tomto případě chlorosomy, světlosběrné antény zelených bakterií, ve kterých se pigmenty organizují spontánně, bez pomoci proteinů. Tuto vlastnost spontánní agregace mají pigmenty bakteriochlorofylu (BChl) c, d nebo e, které jsou v chlorosomech zastoupeny nejpočetněji. Díky této vlastnosti lze vytvořit umělé světlosběrné antény na stejném principu a rozšiřovat jejich absorpční spektrum pomocí dalších pigmentů. V této práci byly studovány antény vzniklé agregací BChl c s β-karotenem a BChl a dvěma metodami, rychlou a pomalou. Nejprve byla zkoumána účinnost přenosu energie mezi těmito pigmenty. Přenos energie mezi BChl c a BChl a dosahoval až 95 %, zatímco přenos z β- karotenu na BChl c má účinnost nižší. Důležitou vlastností β-karotenu v umělých agregátech podobně jako v přirozených chlorosomech však bylo...

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.